

재료 및 기기

먼저 각자 앞에 놓여있는 다음 아이템들이 다 있는지 확인하기 바란다. **만** 일 리스트의 아이템이 없다면, 시험 시작 후 15분 이내에 핑크카드를 들기 바란다.

A. p200 피펫 1개. 특별한 언급이 없는 경우 20-200 uL 범위의 부피를 재는데 사용.

- B. p1000 피펫 1개. 특별한 언급이 없는 경우 201-1000 uL 범위의 부피를 재 는데 사용.
- C. 96개의 p200 팁이 들어 있는 박스. 각 팁은 사용후 버릴 것.
- D. 96개의 p1000 팁이 들어 있는 박스. 각 팁은 사용후 버릴 것.
- E. 소형 원심분리기 튜브 (1.5 ml) 30개 이상.
- F. 소형 원심분리기 튜브를 위한 rack 1개.
- G. 국가번호와 A 또는 B로 라벨된 Microtitre plate 2개.
- H. Microtitre plate template 1개.
- I. 타이머 1개.
- J. 연필 1개
- K. 마커 1개.
- L. 계산기 1개.
- M. 자 1개.
- N. 시험감독관과의 연락을 위한 핑크카드.
- O. 9 ml의 2M Na₂CO₃ 반응스톱(**Stop**). (Molar 농도는 mole/L)
- P. 6.5 ml의 15 mM (milli-molar, milli=10⁻³) pNP-Gal 기질 (**Substrate**).
- Q. 15 ml 순수한 물 (Water).
- R. 5 ml의 1mM pNP 표준용액(**Standard**).
- S. 2 ml의 0.024 mg/ml 효소 (Enzyme).
- T. 5 ml의 0.5 M 저해제 (Inhibitor).
- U. 태블릿 PC를 위한 터치펜.

1.1. 효소 반응속도 서론

α-Galactosidase 효소는 α-galactoside 말단의 galactosyl 잔기의 가수분해를 촉진한다. 일반적으로 이 효소의 활성은 합성 기질유사체인 para-nitrophenyl-α-galactoside (pNP-Gal)를 이용하여 분석하는데, 이 pNP-Gal 은 α-Galactosidase 효소에 의해 galactose (Gal)와 para-nitrophenyl (pNP)로 분해된다(그림 1.1). pNP-Gal 은 색이 없지만 pNP 생성물은 노란색을 띄며, 따라서 그 농도는 microtitre plate reader(해독기)를 이용하여 405 nm 에서의 흡광도 A_{405} 를 측정함으로써 정량화할 수 있다.

그림 1.1: galactosidase 활성 측정의 모식도. pNP 농도는 microtitre plate reader (2번 사진)를 이용하여 405 nm에서의 흡광도를 측정함으로써 정량화할 수 있다. 표준곡선을 이용하여 흡광도를 생성물 농도로 전환함으로써 효소 활성을 측정할수 있다. 7번 사진은 microtitre plate (재료 G).

파트 1에서는 기질 농도에 따른 가수분해 속도의 의존성을 탐색할 것이다. 이를 위해 이 관계를 나타내는 미카엘리스-멘텐곡선(그림 1.2)을 이용하여 두가지 중요한 계수인 V_{max} 와 K_m 를 예측할 수 있다(그림 1.2 설명 참조).

초기반응속도 V_0 는 단위시간(Δt)당 생성물 농도([P])의 변화를 나타내는 Δ [P]/ Δt 로부터 결정할 수 있다.

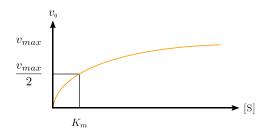


그림 1.2: 미카엘리스-멘텐 곡선: 초기반응속도 V_o 와 기질농도 [S]간의 관계. K_m 은 효소의 최대 활성의 절반을 보이는 기질의 농도임. V_{max} 에서는 효소의 모든 활성 부위가 기질과 결합되어 있음을 나타낸다.

라인위버-버크 그래프를 이용해서 X축이나 Y축의 교차점으로부터 각각 V_{max} 과 K_{m} 값을 계산할 수 있다(그림 1.3). 라인위버-버크 그래프는 초기반응속도의 역수($1/V_{\text{o}}$)와 기질농도의 역수(1/[S])로부터 생성할 수 있다.

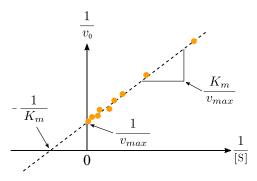


그림 1.3: 라인위버-버크 그래프: 서로 다른 기질 농도에서의 V_o 로부터 라인위버-버크 그래프가 만들어진다. 직선을 그어 이 직선과 X축과의 교차점 역수로부터 K_m 을 결정하고, 이 직선과 Y축과의 교차점 역수로부터 V_{max} 가 결정된다. 각 교차점들은 직선 함수로부터 계산된다.

1.2. 산업용 ALPHA-GALACTOSIDASE의 효소 반응속도 실험

1.2.1. 표준곡선

효소 반응의 생성물(pNP) 농도를 측정하는데 사용할 표준곡선을 만들도록 하시오. 표준곡선을 만들기 위해 1 mM pNP 표준 stock 용액 (**Standard**)을 반응스톱 (**Stop**)으로 희석할 필요가 있다.

■ Q.] 표준곡선 희석 방식

Node Id: 33d4423128da888b1ac05d65

필요시 1 mM pNP표준 stock 용액(Standard)을 반응스톱(Stop)으로 희석한다. 500μ l의 최종 표준농도를 준비하기 위하여 pNP 표준stock 용액과 반응스톱의 부피를 계산하여 아래 표 1.1에 기입하시오.

튜브 라벨	St1	St2	St3	St4	St5
[<i>p</i> NP] 표준농 도 (mM)	0.2	0.4	0.6	0.8	1
표준 stock 용액 (Standard) 의 부피(µI)					
반응스톱 (Stop)의 부피 (µl)					

표준곡선의 준비 프로토콜

- a. 5개의 1.5 ml 소형 원심분리기 튜브에 표 1.1의 첫열(row)에 맞추어 마커로 표시하시오: St1부터 St5까지.
- b. 표 1.1의 계산대로 서로 다른 부피의 1 mM pNP 표준용액 (**Standard**) 을 라벨된 1.5 ml 튜브로 넣으시오(**같은 피펫팁을 이용하시오**).
- c. 표 1.1의 계산대로 서로 다른 부피의 반응스톱 (Stop) 을 각 튜브로 넣으시오. 각 튜브를 상하로 5회 뒤집어 잘 섞으시오.
- d. 순수한 물(Water) 100 µL를 microtitre plate A의 A1-A5 와 B1-B5 well 에 넣으시오(같은 피펫팁을 사용하시오. 그림1.4 와/또는 microtitre plate template를 이용하면 올바른 well에 피펫팅하는 데 도움이 됨)
- e. 표 1.1의 최종 *p*NP 희석표준용액 50 µL씩을 microtitre plate의 동일한 well에 넣으시오.
- f. p1000 피펫을 이용하여 각 pNP 표준용액이 들어있는 A1-A5와 B1-B5 well에 100 μL의 반응스톱 (**Stop)**을 첨가하시오. 혼합액을 상하로 두 번 피펫팅하여 잘 섞도록 한다.

Plate A		1	2	3	4	5	6	7	8	9	10	11	12
	Α	St _i 1	St _i 2	St _I 3	St _i 4	St _I 5							
	В	St _{II} 1	St _{II} 2	St _{II} 3	St _{II} 4	St _{II} 5	1						
	С							Ŧ	준곡	선			
	D												
	Е												
	F						Ę	바응:	속도	실현	4		
	G	S ₁ 1	S _I 2	S _I 3	S _I 4	S _I 5	~						
	Н	S _{II} 1	S _{II} 2	S _{II} 3	S _{II} 4	S ₁₁ 5							

그림 1.4: microtitre plate A: St, 표준용액 (표 1.1 참조); S,각기 다른 기질 농도의 반응 혼합액 (아래 표 1.2 참조).

파트 1.2.2에서는 microtitre plate에 효소반응 혼합액을 준비하고자 한다.

주의할 점: 조교는 시험 마지막 10분 이내에는 microtitre plate를 받지 않을 것임. 만일 파트 1.2.2를 제시간에 마무리할 수 없다고 생각되면 핑크카드를 들어 Plate를 제출하시오. 여러분의 결과는 Question 2에서 보게 될 것이다.

1.2.2. 효소 반응속도 실험

프로토콜

반응속도 실험을 위해 pNP-Gal 기질의 희석용액을 준비한다.

- a. 마커로 5개의 1.5 mL 튜브에 S1 S5로 각각 라벨하시오(표 1.2).
- b. 라벨된 1.5 ml 튜브에 15 mM *p*NP-Gal 기질 stock 용액(**Substrate**)과 순수한 물(**Water**) 을 넣어 희석하시오(아래 표 1.2 참조). 희석용액을 위아래로 5번 뒤집어 잘 섞으시오.

표 1.2: 반응속도 분석을 위한 기질 희석 방식

튜브 라벨	S1	S2	S3	S4	S5
15 mM <i>p</i> NP-Gal(Substrate)의 부피 (ul)	40	120	240	400	800
순수한 물(Water)의 부피(ul)	960	880	760	600	200

- c. 각각의 희석된 기질용액 50 uL(표 1.2)와 순수한 물(Water) 50 uL을 microtitre plate A의 G1-G5 와 H1-H5 well에 옮기시오 (그림 1.4 와/또는 microtitre plate template를 이용).
- d. 아래 설명한 바와 같이 타이머를 5분으로 맞추고 효소용액을 첫번째 well에 옮겨 첫번째 초기효소반응(S₁1)을 시작하게 한 후 바로 타이머를 작동하시오.
- e. 0.024 mg/ml 의 α-galactosidase 효소(**Enzyme**) 50 uL를 S₁1과 S₁₁1으로 시작하는 G1-G5 그리고 H1-H5 well로 옮기시오. 같은 순서와 템포 로 S₁₁5까지 효소 용액을 옮겨 효소 반응을 시작하게 한다(이후로 "효소 반응혼합액"이라고 칭함). 각 well에서 혼합액 50 uL을 재빠르게 하지 만 부드럽게 2번 피펫팅함으로써 잘 섞는다.
- f. 5분간 기다린 후, $100 \, \mu$ L의 $2 \, M \, Na_2 CO_3 \,$ 반응스톱(**Stop**)을 $p1000 \, \text{피펫}$ 을 이용하여 효소반응을 시작한 순서와 템포로 첨가함으로써 $G1\text{-}G5 \, Q$ H1-H5 well의 효소반응을 스톱시킨다. 위아래로 두번 피펫팅하여 잘 섞는다.

🎮 📗 Q. 2 효소 반응속도 실험

Node Id: 5190fa8c928723da8fa3148c

핑크카드를 들어 **파트** 1.2.1 **및** 1.2.2의 샘플을 포함하는 microtitre plate 를 제출하시오, 측정 후 측정값들은 자동으로 아래 표에 나타날 것임.

주의할점: 시험 마지막 10분내에는 microtitre plate를 받지 않을 것임.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
Е												
F												
G												
Н												

1.3 효소 반응속도 데이터 분석

이제 여러분이 할일은 α -galactosidase에 의한 기질 가수분해 반응의 반응속도 계수를 조사하는 것이다.

먼저 표 1.3 데이터로부터 생성물(pNP)의 표준곡선 선형함수를 조사하여야 한다.

표준곡선을 이용하여 반응혼합액 내의 생성물 농도를 계산할 수 있고, 나아가 각 기질 농도에서 효소의 초기반응속도 (V_0)를 조사할 수 있을 것이다.

microtitre plate A와 비슷한, 아래 표 1.3에서 제시한 표준데이터 세트를 계산에 사용하여야 한다. 그렇게 하면 파트 1.2에서의 오류에 의해 발생한 감점을 피할 수 있을 것이다. 하지만 여러분 자신의 데이터는 측정되어 실험 평가에 이용될 것이다.

표 1.3: 계산을 위해 제시한 흡광도 데이터 (microtitre plate 포맷의 1-5열)

	1	2	3	4	5
A	0.882	1.681	2.473	3.251	3.964
В	0.858	1.657	2.449	3.227	3.940
÷					

G	0.304	0.728	1.049	1.272	1.512
Н	0.307	0.716	1.009	1.234	1.466

▶ Q. 3 표준용액의 흡광도 평균값

Node Id: 52c0b8ea517e35bb71e655e1

표 1.3에 주어진 표준곡선을 그리기 위하여 각각의 중복 측정치에 대한 흡광도 평균값을 계산하시오. 답항의 모든 수치는 소수점 이하 3자리까지 표시하시오.

튜브 라벨	St1	St2	St3	St4	St5
[<i>p</i> NP] (mM)	0.2	0.4	0.6	0.8	1
중복측정한 A _{405nm} (흡광 도) 평균값					

■ Q. 4 표준곡선 선형 함수

아래 그림(**그림 1.5**)에서 *p*NP의 농도(mM)는 Question 3에서 계산된 평균흡광도(*A*₄₀₅ nm) 값에 대응되게 제시하였다.



그림 1.5: 가상의 pNP 생성물 표준곡선. 자주색 원은 측정된 흡광도의 평균값을 나타내며, 검정 점선은 평균 흡광도 값에 대한 선형 회귀를 나타낸다.

Node Id: 1490bf7874a519200e9b4847

St1과 St5의 두 데이터 포인트의 평균 흡광도만을 이용하여 산술적으로 표준곡선 선형함수의 a와 b를 결정하시오(아래 참조). a와 b의 값을 소수점이하 3자리까지 구하시오.

A₄₀₅ (405 nm 에서의 흡광도) = a⋅[pNP] (mM) + b (a는 기울기, b는 Y축과

0	一	·점을		ŀΕ	나내)
_	<u> </u>		_	_	

a (A ₄₀₅ /mM)	
b (A ₄₀₅)	

파트 1.2.2에서 효소반응 혼합액의 총부피는 150 µl이다.

1	Q. 5	반응 시간
	 Q . 0	

Node Id: 4a094717ade59a3249c9b494

프로토콜에 주어진 반응시간을 초로 변환하시오.

반응시간 (초)	

■ Q. 6 반응속도 데이터의 분석(저해제가 없는 조건의 효소)

Node Id: 8af8b696e90b22d7e2054ab8

각 반응혼합물에서의 생성물 농도 계산을 위해 다음의 표준곡선 식을 사용 하시오.

A₄₀₅ 흡광도 = 2.29 x [*p*NP] (mM) + 0.058

초기반응속도 V_0 는 Δ [생성물농도]/ Δ 시간, 즉, 시간당 생성물 농도의 변화로부터 계산할 수 있다. 모든 값들을 소수점 이하 3자리까지 구하시오.

튜브 라벨	S1	S2	S3	S4	S5
기질 stock 용 액(Substrate) 의 부피(µI)(표 1.2로부터)	40	120	240	400	800
순수한 물 (Water) 의 부피(ul)(표 1.2 로부터)	960	880	760	600	200
반응혼합액에					

첨가하기 전 의 기질 농 도 [S] (mM)			
반응혼합액 내 의 기질 농 도 [S] (mM)			
표 1.3에서 계 산된 A ₄₀₅ 흡광 도의 평균 (mean A ₄₀₅)			
생성물 평균 농 도 [Product _{mean}] (mM)			
V₀(μM/초)			
1/[S] (1/mM)			
1/V ₀ (초/µM)			

■ Q. 7 미카엘리스-멘텐 계수(그래프를 통한 추정치)

아래 그림 1.6의 곡선은 표 1.3의 반응혼합액 S1 - S5와 비슷한 조건에서 얻은 이론적인 미카엘리스-멘텐 곡선(V₁ 대 [S])이다.

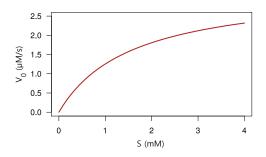


그림 1.6: 효소 저해제가 없는 반응속도 실험에 대한 미카엘리스-멘텐 곡선

Node Id: cda3a6b0f57d7c91bc8e7f55

그림 1.6.의 미카엘리스-멘텐 곡선으로부터 그래프 상으로 V_{max} 와 K_{m} 을 추정하시오. 소수점 이하 1자리까지 계산하시오.

V _{max} (μM/s)	
K _m (mM)	

■ Q.8 라인위버-버크 선형 함수

아래 **그림 1.7**은 라인위버-버크 구도(**표 1.3**의 S1 - S5 데이터 포인트의 1/V₀ 대1/[S]) 이다.

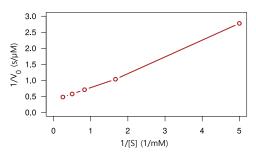


그림 1.7: 저해제가 없는 조건에서의 효소 반응속도 데이터의 라인위버-버크 구도

Node Id: abe02ebea0fb571a968e4799

\$1과 \$5의 두 데이터 포인트로부터 수학적으로 계산하여 아래 라인위버-버 크 구도(그림 1.7)의 선형 함수를 결정하시오. a와 b 의 값을 소수점 이하 3 자리까지 구하시오.

 $1/[V_0] = a \times 1/[S] + b$

a (mM·s/µM)	
b (s/µM)	

🎮 📗 Q. 9 V_{max}와 K_m 결정

Node Id: 8ffaae0fa99b746314cfe790

위에서 계산된 선형 함수를 이용하여(Q.8), 양축과의 교차점으로부터 K_m 와 V_{max} 를 결정하시오. 소수점 이하 3자리까지 표시하시오(단위 변환을 하지 말것).

V _{max}	

 κ_{m}

🎮 📗 Q. 10 반응 혼합액에서의 효소 농도

Node Id: 02df7e4734e45ebc25743e41

효소 stock 용액 농도(0.024 mg/ml)와 효소의 몰 질량(molar mass, 75,000 g/mole)을 이용하여 반응혼합액 내의 효소 농도를 μM 로 계산하시오. 농도는 소수점 이하 3자리까지 구하시오.

효소 stock 용액 (mg/ml)	0.024
반응 혼합액 내의 효소 농도[E] (µM) (µ = micro)	

🎮 📗 Q. 11 전환율 상수 (turnover rate constant)

촉매 전환율 상수 k_{cot} (효소 한 분자 당 반응 속도)은 1/초 단위로 되어 있으며, 다음과 같이 계산할 수 있다.

$$k_{cat} = \frac{v_{max}}{[E]}$$

Node Id: e0caf4524c392ac095d6f406

소수점 이하 3자리까지 k_{cat} 을 결정하시오.

k _{cat} (1/초)	
------------------------	--

2.1 저해제 서론

저해제는 효소에 특이적으로 결합하여 효소 활성을 감소시키고 K_m 이나 V_{max} 또는 양쪽 모두의 겉보기(apparent) 변화를 일으키는 화합물이다. 겉보기 반 응속도 계수의 변화는 저해제가 존재하는 조건에서 수행한 효소 반응의 라인

위버-버크 구도를 통해서 얻을 수 있다. 가역적 저해제는 표적 효소에 결합하는 방식에 따라 경쟁적이거나 비경쟁적(non-competitive)이거나 무경쟁적 (uncompetitive) 저해를 일으킨다. 효소 활성의 저해와 반응속도 계수의 겉보기 변화는 미카엘리스-멘텐과 라인위버-버크 구도로 가시화 할 수도 있다(그림 2.1).

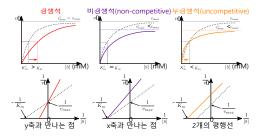


그림 2.1: 미카엘리스-멘텐과 라인위버-버크 구도에서의 효소 활성 저해: 검정 점선은저해제가 없는 조건이고, 실선은 저해제가 존재하는 조건이다. V_0 는 초기반응속도이다.

저해제는 다음 식과 같은 저해 평형상수 K; 에 의해 특징이 결정된다.

$$K_i = rac{[\mathrm{I}][\mathrm{E}]}{[\mathrm{EI}]}$$

위 식에서 [I], [E]와 [EI]는 자유형(free) 저해제, 자유형(free) 효소 그리고 효소-저해제 복합체의 농도를 의미한다.

경쟁적 저해에서 저해제가 존재하는 조건의 겉보기 K_m 은 K_m 로 표기한다. 효소(E)에 결합한 기질(S)과 저해제(I)의 화학평형을 아래에 나타내었다. K_m 과 K_m 은 아래 식과 같은 관계를 가진다.

비경쟁적(non-competitive) 저해에서 저해제가 존재하는 조건의 겉보기 V_{max} 는 V_{max} 로 표기한다. V_{max} 의 V_{max} 는 아래 식과 같은 관계를 가진다.

무경쟁적(uncompetitive) 저해에서 저해제가 존재하는 조건의 $K_{\rm m}$ 과 $V_{\rm max}$ 는 각기 $K_{\rm m}$ 의 $V_{\rm max}$ 로 표기한다. $K_{\rm m}$ 과 $V_{\rm max}$ 는 $K_{\rm m}$ 의 $V_{\rm max}$ 의 아래 식과 같은 관계를 가진다.

식 2.1: 서로 다른 저해 유형에 대하여 효소(E)가 기질(S)과 저해제(I)에 결합하는 화학 평형을 그림 윗 부분에 나타내었다. 아래 부분은 저해제 농도와 저해 평형상수에 대한 겉보기 반응속도 계수와 저해제 농도 및 저해 평형상수 간의 식을 나타내고 있다.

	Q. 12 저해에 영향을 주는 요인
모든 중 (d: e73dd9526d3687dcfece83b2 든 저해 유형에 대하여 효소 반응 속도의 감소와 같은 저해 수준은 다음 어느 것에 가장 크게 영향을 받는지 고르시오(가장 적절한 답항 하나 고르시오).
1.	저해제 농도[I]
2.	기질 농도[S}
3.	저해제의 K_1
4.	[ES] 농도
5.	위 1, 2, 3 답항
6.	위 1과 3 답항
 ≈	Q. 13 경쟁적 저해의 특징
	d: 895c70dd92f56ff77a0f683c 음 서술 (statement) 이 참 (true) 또는 거짓 (false) 인지 표시하시오. 참 거짓 (TRUE) (FALSE)
	적 저해에서 기질 농도[S]를 증가시키면 저해를 줄이 · 극복한다.

2,2 ALPHA-GALACTOSIDASE의 저해 (27점)

이 파트는 실험적으로 **파트 1b**와 유사하다. α -galactosidase의 저해 반응속도 실험은 50uL의 저해제가 존재하는 조건에서 수행할 것인데, 저해제의 동도는 0.5 M(mole/L)이다.

실험 방법

저해 반응속도 실험을 위한 기질 준비

a. 파트 1.2.2에서 여러분이 하였던 것처럼 표 2.1과 같이 기질 용액을 준비하시오. 튜브를 5번 아래위로 뒤집어서 용액을 잘 섞는 것을 잊지 마시오.

표 2.1 반응속도 분석을 위한 기질 희석 표

튜브 라벨	IS1	IS2	IS3	IS4	IS5
기질(Substrate) stock 용액의 부피 (µI)	80	160	320	600	840
순수한 물(Water)의 부피(µI)	920	840	680	400	160

b. 50uL의 저해제(**Inhibitor**)를 microtitre plate **B**의 A1-A5 와 B1-B5 well에 같은 피펫 팁을 사용하여 각각 넣는다 (그림 2.2 와/또는 microtitre plate template 참조).

c. **표 2.1**에서 제시한 각각의 기질 용액 50uL를 A1-A5 와 B1-B5의 동일한 well에 넣는다.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	IS _I 1	IS _I 2	IS _I 3	IS _I 4	IS _I 5							
В	IS _{II} 1	IS _{II} 2	IS _{II} 3	IS _{II} 4	IS _{II} 5							
C												
D												
Е												
F												
G												
Н												
	B C D E F	B IS _{II} 1 C D E F G	A IS,1 IS,2 B IS,1 IS,2 C D E F G	R	A Is,1 Is,2 Is,3 Is,4 B Is,1 Is,2 Is,3 Is,4 C Is,1 Is,1 Is,3 C Is,1 Is,2 Is,3 C Is,3 Is,4 C Is,4 Is,4 C	A S ₁ S ₂ S ₃ S ₄ S ₅ B S ₄ S ₄ S ₄ S ₄ C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S S C S S S S S C S S S S S C S S S S S C S S S S C S S S S C S S S S C S S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S S C S S C S S S C S C S	A	A	A	A	A	A

그림 2.2: microtitre plate template B: IS 샘플은 서로 다른 기질 농도에서 저해제가 존재하는 반응 혼합액이다(위의 표 2.1을 참조).

d. 타이머를 5분으로 세팅하고, 효소 용액을 아래 설명한 것처럼 첫번째 well(IS₁1)에 넣어 효소 반응을 시작한 후 즉시 타이머를 작동하게 한다.

e. 각 50uL의 α-galactosidase (Enzyme)을 IS_I1과 IS_{II}1로부터 시작하여 IS_{II}5까

지 동일한 순서와 템포로 A1-A5 와 B1-B5의 well에 넣는다.

각 well 마다 효소 용액을 파이펫팅 한 후에 혼합액 50uL을 아래 위로 두번 빠르고 부드럽게 피페팅 함으로써 잘 섞이도록 한다.

f. 5분간 기다린 후, 각 well의 효소 반응을 멈추게 하기 위해 A1-A5와 B1-B5 well에 p1000 파이펫을 사용하여 100uL의 반응스톱(**Stop**)을 아까 시작한 때와 동일한 순서와 템포로 넣는다.

여러분이 반응스톱을 넣은 후 즉시 아래 위로 두 번 피페팅 함으로써 잘 섞이 도록 한다.

Q. 14 효소 저해 반응속도 실험

Node Id: 426d12c4f9e170efdd86247a

파트 2.2로부터 얻은 여러분의 샘플을 포함한 microtitre plate를 핑크 카드를 들어 제출하시오. 측정 후, 얻은 값은 아래 표에 자동으로 나타날 것이다. 여러분의 계산을 위해 아래(표 2,2)에 제시된 표준 데이터를 사용하시오.

주의할 점: microtitre plate는 시험이 끝나기 전 **10**분 내에는 받지 않을 것임.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
В												
С												
D												
Е												
F												
G												
Н												

2.3 ALPHA-GALACTOSIDASE의 저해 반응속도 데이터 분석

여기에서는 파트 2.1의 이론과 파트 2.2에서 제공된 저해제 데이터(아래 그림

2.2 참조)를 사용하여 저해제의 존재하에서의 효소 반응속도 계수를 계산할 것이다. 저해제 조건의 데이터로부터 구한 라인위버-버크 방정식은 저해제가 없는 조건에서 제공된 가상의 라인위버-버크 방정식과 비교하여 어떤 유형의 저해인지 추론할 것이다. 여러분이 저해 유형을 알게 되면, 여러분은 두 개의라인위버-버크 방정식(제공된 저해제가 없는 가상의 조건과 저해제가 존재하는 조건)을 이용하여 이들과 관련있는 반응속도 계수의 변화를 조사할 것이고, 관련 방정식을 이용하여 저해평형상수(K;)를 조사할 것이다.

표 2.2: 저해제 실험을 위해 제공된 흡광도 데이터(microtitre plate 포맷에서 A와 B 두 열과 1-5 컬럼)

	1	2	3	4	5
Α	0.251	0.375	0.507	0.596	0.634
В	0.252	0.380	0.501	0.598	0.635

Q. 15 저해 반응속도 데이터의 분석

Node Id: fc546fd4d7128cbd27680699

계산하여 아래 빈 칸을 채우시오. **Q6**에 주어진 표준 방정식을 사용하여 생성물 농도를 **mM**로 계산하시오.

흡광도 A₄₀₅ = 2.29 x [pNP] (mM) + 0.058

튜브 라벨	IS1	IS2	IS3	IS4	IS5
기질 (Substrate) Stock 용액의 부피 (µI) (표 2.1에서)	80	160	320	600	840
순수한 물 (Water)의 부 피(µI) (표 2.1 에서)	920	840	680	400	160
반응혼합액으 로 섞기 전의 기질 농도[S] (mM)					
반응혼합액 내 의 기질 농도 [S](mM)					

표 2.2에서의 평균 A ₄₀₅ 흡광 도			
[생성물 평균 농도](mM) [Product _{mean}]			
V ₀ (uM/초)			
1/[S] (1/mM)			
1/V ₀ (초/uM)			

표2.2의 IS1-IS5 저해제 조건에서 얻은 반응속도 데이터에 근거하여 라인위 버-버크 그래프를 만들었다. 저해제가 없는 반응의 가상적인 라인위버-버크 방정식은 1/[Vo] = 0.363 x 1/[S] + 0.908 이고, 이 직선 식을 그림 2.3에 제시하였다. 파트 1.3에서 조사한 방정식(그림 1.7)이 아니고 여기 제시한 방정식을 아래 계산에 사용해야 한다.

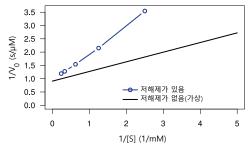


그림 *2.3* 저해제가 존재하는 조건과 저해제가 없는 가상 조건에서의 라인위버-버크 구도

Q. 16 라인위버-버크 직선 식(저해제가 존재하는 조건의 반응)

Node Id: 9cdfa5cfc4afcaa4b2b2537b

IS1 와 IS5 로부터의 데이타 만을 이용하여 저해제가 존재하는 조건의 라인 위버-버크 구도(그림 2.3)의 선형 함수를 아래 수학적으로 나타낸 빈칸에 적으시오.

a와 b의 값을 소수점 3자리까지 제시하시오.

 $1/[V_0] = a \times 1/[S] + b$

2015. 7. 18.

		ibo 2015			
a (n	nM·s/µM)				
b (s.	/µM)				
	Q. 17 저해제:	가 존재할 때의 집	겉보기(app	arent) 반응속도	. 계수
저 d 의	ld: 3b5a63b8ad2e14 해제가 존재하는 반응 겉보기 (apparent) 반 로 제시하시오(이 계신	의 라인위버-버크 응속도 계수를 구	나하시오. 소		
V _{mc}	i xx				
K _m i					
 ■ Q. 18 저해 유형 Node Id: 965ea5209993e7cab506a43a 저해제는 α-galactosidase에 어떤 유형의 저해를 일으켰는가? 저해를 받지 않는 효소의 가상 데이터와 비교하여 저해제가 존재할 때 반응속도 계수의 변화 크기에 근거하여 가장 그럴 듯한 형태의 저해를 고르시오. 					
1.	경쟁적 저해				
2.	비경쟁적 저해(NON-COMF	PETITIVE)			
3.	무경쟁적 저해(UNCOMPET	TITIVE)			
 ~	Q. 19 기질 농	도의 효과			

Node ld: cdfb4878a0cb0206b185bf18

위에서 선택한 저해 유형에 근거하여, 기질 농도의 상승이 저해에 어떻게 영 향을 주겠는가? 다음 서술 중 하나를 고르시오.

	100 2015			
1.	저해가 줄어듬			
2.	변화 없음			
3.	저해가 증가함			
	Q. 20 저해 상수			
반	ld: d9e44291cbc8ad927f078e05 응 혼합액에 넣은 저해제 50uL의 농도가 0.5M일 때, 저해상수(Ki)를 구하 오. 소수점 3자리까지 수를 적으시오(이 계산에서 단위를 변환하지 않음)			
반응 혼합액 내의 저해제 농도(mM)				
<i>K</i> _i (K _i (mM)			

끋